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that, in the case of flexible molecules, much clearer
results are obtained by using a smaller but correct
fragment, rather than a larger one that may differ
significantly in a global sense from the unknown
protein.

This work was supported by the Medical Research
Council of Canada through the Group on Protein
Structure and Function. The authors thank Dr D. R.
Davies for providing them with coordinates of the
J539 Fab fragment.
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On Integrating the Techniques of Direct Methods and Isomorphous Replacement. A New
Probabilistic Formula for Triplet Invariants
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Abstract

The mathematical technique recently used [Haupt-
man (1982). Acta Cryst. A38, 289-294] for integrating
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direct methods and isomorphous replacement tech-
niques is reconsidered. The atomic positions are
assumed to be the primitive random variables instead
of the reciprocal vectors. A new probabilistic formula
for estimating three-phase invariants given six magni-
tudes has been obtained which differs from the corre-
sponding result of Hauptman. The first applications
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suggest that the formula is quite efficient for picking
up triplet cosines near 0 or .

1. Introduction

The theoretical basis for integrating the techniques
of direct methods and isomorphous replacement was
introduced by Hauptman (1982) (henceforth referred
to as H). In his notation, the atomic scattering factors
for a corresponding pair of isomorphous structures
are denoted by f; and g;, so that

N
Ey,=|E,| exp (ipn) = (1/a3y’) Y. f; exp (2ihr;)
j=1

and
N
Gw=|Gyl exp (i) = (1/ ap’) .Zl g; exp (27ihr))
I=
are respective normalized structure factors, where
N
O =3 [T'8].
ji=1

The main aim of Hauptman’s paper was to initiate
the probabilistic theory of two-phase and three-phase
structure invariants for isomorphous pairs. In par-
ticular:

(a) the joint probability distribution
P(¢n, ¥n, | Enl, |Gl)
was found, from which the conditional distribution
P(wy||Eyl, |Gil)
may be obtained, where
O = @p— Py

is a two-phase structure invariant;
(b) the joint probability distribution function

P(@1, 02, @3, 1, ¥, ¥, R, Ry, Ry, S, S5, S3)
=[7°(1-a?)’]"'R,R;R;S,5,5;

xexp {—[1/(1-a®)J(R}+ R3+ R}

+ S+ 855+ S3)+2B[R,S, cos (¢, — )

+ R,S; €os (@2~ ¥) + R3S;5 cos (@3 — ¢3)]

+2BoRR,R; cos (¢, + ¢+ ¢3)

+2B,[R1R,S; cos (¢, + @2+ ¥3)

+ R S,R; cos (¢ + ¥+ ¢3)

+ SRy R5 cos (Y + ¢+ ¢3)]

+2B,[R, 5,55 cos (¢ + o+ ¢3)

+8,R,S; cos (Y, + ¢, + 43)

+81S,R;5 cos (Y, + ¢+ ¢3)]

+2B35,5,85 cos (¢ + ¢+ ¢)} (1)
was secured, where ¢,, ¢,, @3, ¥, ¢, ¥ stand for

©hs Pxs iy d’hs llfka d’l respe(:tively, Rl, R2a R3’ Sl’
Sy, Sy represent |Ey|, |Eyl, | E||, |Gyl, | Gul, |G| respec-
tively, and

h+k+1=0. (2)

The parameters a and B [equations (H2.5) and
(H3.5)-(H3.9)] may be expressed in terms of the
parameters &,,,.

From (1) conditional probability distributions of
the three-phase structure invariants

o=@t et
®;=@pt eyt iy
o3 =@nt Pt @
W= Ppt ot ¢y
ws= eyt
we=Ynt @t
W= Ynt it @
wg = Ynt o+ iy,

given the six magnitudes R,, R,, R;, S, S,, S5, may
be found. The first applications of the method
(Hauptman, Potter & Weeks, 1982) on error-free
diffraction data from the protein cytochrome csso from
Paracoccus denitrificans (molecular weight M, =
14 500, space group P2,2,2,) and a single PtCl;~
derivative were successful. Reliable tens of thousands
of triplet invariants having extreme values 0 or 7 were
identified, so the method appeared to be of increasing
importance for the determination of macromolecular
structures.

A useful interpretation of the formulae in terms of
experimental parameters was suggested by Fortier,
Weeks & Hauptman (1984). It was shown that distri-
butions do not depend, as in case of the traditional
three-phase invariants, on the total number of atoms
per unit cell but rather on the scattering difference
between the native protein and the derivative (that
is, on the scattering of the heavy atoms in the
derivative).

Hauptman’s approach is largely innovative and
opened a new field for the application of direct
methods. However, his mathematical procedure may
be further modified in order to derive more accurate
probabilistic formulas. As a first practical example,
let us observe the parameter

a= an/(azoaoz)llza

which is deeply involved in distribution (1) (it is also
employed to define the B; parameters). While « is a
resolution-dependent parameter, its value in the pro-
cedure is calculated via zero-angle scattering factors
of fand g. Indeed in (1) no difference is made among
ay, o, o) in spite of the fact they may be markedly
different. The same considerations hold for the
parameters «,, which define the more complex
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parameters B8 and B;, i=0, 1, 2, 3, via equations
(H3.5)-(H3.9).

The main aim of the present paper is therefore to
obtain new probabilistic formulas by a mathematical
approach which is able to take full account of the
resolution effects on distribution parameters. It is
worth mentioning that in Hauptman’s approach the
primitive random variable is the ordered triple (h, k, 1)
of reciprocal vectors which is assumed to be uniformly
distributed over the subset (2) of the threefold Car-
tesian product S, xS, xS, (S, denotes reciprocal
space). Then E,, E,, E,, Gy, G, G, are functions
of the primitive random variables h, k, 1, so that they
are themselves random variables.

In our approach atomic coordinates are chosen to
be the primitive random variables while h, k, 1 will
be a fixed triple of reciprocal vectors. This enables
us to calculate all the distribution parameters for that
chosen triple, that is to say, at the resolution corre-
sponding to the |h[, |k|, |1] values.

The distribution based on atomic coordinates as
the independent random variables is conceptually
distinct from that in which it is assumed that the
reciprocal vectors are random variables (see
Giacovazzo, 1977). In most cases reciprocal vectors
and atomic coordinates play a quite symmetric role
[i.e. when no prior information is available, and it is
only necessary that the fractional part of hr be uni-
formly distributed in the interval (0, 1)]. On the other
hand prior information often breaks down the sym-
metry of the roles, so that the two distributions are
deeply different [for example, when a structural frag-
ment has a known position (Giacovazzo, 1983), or
when superstructural effects are present (Cascarano,
Giacovazzo & Luié, 1985, 1987)]. Symmetrization of
the roles is still possible but some supplementary
conditions on the reciprocal vectors are needed if
they are used as primitive random variables. For
example, in the case of substructural effects it is often
necessary to restrict reciprocal vectors to subsets con-
stituted by reflexions of fixed parity. In the present
case, in which distribution parameters depend on the
moduli |h|, |K|, |1|, the ordered triple (h, k, 1) has to be
assumed to be uniformly distributed over the subset
of S, xS, xS, defined by (2), but under the supple-
mentary condition that |h|, |k|, |I| have fixed chosen
values.

In §§ 2 and 3 the main formulas are given, and in
§ 4 a first practical application is described.

2. The joint probability distribution of the six structure
factors E,, E,, E,, G,, Gy, G,, where h+k+1=0

The atomic positions are chosen to be the primitive
random variables. The mathematical formalism adop-
ted here follows that described in a recent book
(Giacovazzo, 1980) with some differences in detail,
which for the sake of brevity are not described. One

obtains the result

P(‘Pl, P2, P3, d’]’ d’Z’ d’3, RI, R27 R31 Sla 527 53)
2(1/76)R1R2R3515253[(1 —af)(l —-a3)(1 _ag)]_l

xexp{+§ [—(R2+ 8%)/(1-a?)
i=1

+2B0iR:S; cos (¢ — ¢;)]

+2BoR RyR;5 cos (¢, + ¢+ ¢3)
+2B1151R,R; cos (Y1 + @2+ ¢3)
+2B12R,S;R; cos (¢ + ¢+ ¢3)
+2B13R 1 R,S;5 cos (¢ + @+ 3)
+2B21R,1 5,85 cos (¢ + Y2+ 43)
+2B2281 R, S5 cos (Y + ¢+ r3)
+2B235152R;3 cos (Y + ¥+ ¢3)

+28585:5,8; 005(1111'*'(1’2'*'(!’3)} (3)

where

Bo= [H (1- a?)]_ (—aya3Y4s6

+a @y yst ajazyust arasyise

— QY234 — ®2Y135— A3Y126 T Vi23)s
-1
Bi= [H (1 —a?)] (o035

o 0,Y135 T @3V 126 X3Yase

—@1Y123= ®2Y345— A3Y246 T Y234),

-1
Bi2= [H (1- a?)] (—a 02037246

i
+a Y234t @3 Yase T @23V 126

— @1 Y345~ X2 Y123~ X3Y156 T Y135)s
-1
Biz= [H (1 —0‘?)] (—a 0037345

+ a0y Yas6 T @103 Y234 T A2 03135

— @1 Y246— @2Y156 — A3Y123 T Y126)s
-1
B = [H (1- a?)] (—oy003Y734

+ a1y Va6 T @1 A3 Y345t X203Y123

— @1Vase— X2Y126— X3Y135 Y156)s
-1
B2 = [H (1 —a?)] (—ajara3135

T 0Y156t 013123 X203 Y345

— Y126~ ®2Yas6 — A3Y23aF Yaa6)s
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Ba= [H (1 _af)]_ (_alazas‘)'lzs

a0yt a3y 56T X324

— QY135 — @2 Y238~ X3YaseT Yas)

B:= [H (1 —a?)]_ (—ajo037123

T a6t o a3y 35t Aa03Y214

— Q1 Y156~ Q2246 — X3Y345 T Vase),

Boi=a;/(1—a?) fori=1,2,3.

In their turn

a, = al|(h)/[azo(h)aoz(h)]l/2
;= a’l1(1()/[‘?lzo(k)aoz(k)]l/2
a3 = an(l)/[azo(l)aoz(l)]]/z

where
N
ay(h) = El f,z(h) = Zl,
ay(k) = g.l sz(k) 222,
axo(l) = g.l sz(l) = 23,
an(h) = T g(h) =T,
an(k)= T g} =1,
N
ag(l) = Z‘.l gjz(l) = Z;,
N
ay(h)= A;fj(h)gj(h),
an()= 3 705K
N
ay(l)= _;fj(l)gj(l)'
Also

N
Y26=(X, 2, Z;)—l/z El fi(h)fi(k)g;(1),
N
Yi3s = (Z] z; 23)_”2 ‘§| ﬁ(h)gj(k)ﬁ(l)3
Y156 = (Zl Z'z Z;)_l/z z,l fj(h)gj(k)gj(l),

N
Y234 = (Z’. 22 23)_1/2 E:l gj(h)ﬁ(k)ﬁ(l)’

Table 1. Correspondence between parameters occur-
ring in Hauptman’s and in our distribution

a->a,a;,a;

B = Boi> Boz2s Bos
Bo= Bo

Bi~ B3, Bi2, Bu
By= Bays Bazs B
B3 Bs

Yaas= (I, 25 23)“”51 g (g k)L,
Yus=(Z1 L, Z;)“”jgl g (h)fk)g),
Yass = (L1 25 ZQ)"”jgl g(h)g;(k)g(1),
Y= (5, 5,507 £ 0050

If (3) is compared with (1) it may be observed that:

(a) A one-to-many correspondence exists between
a and B;,i=0,1,2,3in (1), and parameters occurring
in (3). Parameters playing a similar (but not identical
role) lie on the same line in Table 1.

(b) a;and B; parameters occurring in our distribu-
tion are numerically markedly different from the cor-
responding parameters of Hauptman. This also holds
for terms B, and B,, in spite of the fact that the same
symbols are used in (1) and (3).

(¢) To the eight parameters y;; only four distinct
parameters (Le. asg, az;, @3, @g3) correspond in
Hauptman’s distribution.

From (3) the following conditional probability dis-
tribution may be derived:

P(wllRls RZa R3aslaSZsS3)

:[27710(/41)]_15’(13 [A; cos w,] (4)
where

A1 =[2BoR | RR3+ (28115, R,R;) T,

1 (2B12R $,R3) T, +(2B13R R, 83) Ty

2B 8,85 R T T+ (28,8 RS TV Ty

+2B51R, 8,85, T,T;+2855,5,5, T, T, T;]
where

T = [,(2BoiR:S:)/ Io(2BoiR;S;)
is the ratio of two modified Bessel functions. Equation
(4) may usefully be compared with (H3.14).
Similar expressions for w;, i=2,...,8 may be

found in a recursive way. Adopting the practical rule
described by Fortier, Weeks & Hauptman (1984), we
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get
A; =[15(2BoR,R,R3)+ 7,,(281,S:1R:R5)
+ 712(2812R1 8, R;5) + 715(2813R R, S53)
+723(2B23815:R3) + 722(2B2:5, R,S3)
+7'21(2321R15253)+73(233515253)] (5)

where 7= C,C,C; is obtained by comparing the ith
structure factor associated with the coefficient of 7
with the ith structure factor associated with the
invariant. If they are of the same type, i.e. both R or
both S, then C;=1 for i=1, 2, 3, otherwise C;=T..

3. The case of a native protein heavy-atom derivative

Formulas (3) and (1) are completely general and
include as special cases native protein and heavy-
atom isomorphous derivatives as well as X-ray and
neutron diffraction data. We explicitly treat here the
case of a native protein heavy-atom derivative
because:

(a) it frequently occurs;

(b) the parameters of the distribution (3) are then
rather simple;

(¢) it allows an easier interpretation of the formula
in terms of diffraction experiments.

The following notation is introduced:

ZHl =§fj2(h), ZH2=§sz(k)’ZH3=§sz(l)s

1/2
Yo = [gf;(hm(kmm] / (z. zzzs)

1/2
YH = [%j}(h)fj(k)j}(l)]/(i, Y, 23> ,

where summations over P and over H state that free
indices vary over protein atoms and over heavy atoms
respectively. In its turn y, may be approx1mated by
the well known parameter [o3/ o3*1p, where o,=
Y Z?, and Z; is the atomic number of the jth atom.
Funhermore

azo(h) = an(h)=Zl,

and

ag(h) =%, +% 4, =X
azo(k)=all(k)=22: aoz(k)222+ZHz=Z;
azo(l)—an(l 23, aos(l) Z3+ZH3_Z3

om(o/5) Coe(e/5)
az= 23/23)

w=(3) " /T

£|=H(1—a,) 52=H(1_a%),

Yaza/ @1 = Yi3s/ @2 = YVize/ @3 =
Y3as/ X102 = Vaae/ @103 = Y156/ @203 = Y123 = Yp,
Yase = (vpt+ yu)e1aza3,
BO=(£27P_a%a%a§7H)/82,
Bu= a’la%ag?’H/Ez,

2 2
Bi2= aja,aszyn/e;,

Biz= a’%“%“s')’n/sza

Ba = —a%a2a3yH/ez,
B = _alagaﬁ’H/Ez,
Bxn= “alazag‘YH/ez,

Bs=ajoa3y4/ €.

Let us now suppose that the terms (28y:R;S;) are
sufficiently large to justify the assumption T;=1 for
i=1, 2, 3. Then (5) may be approximated by

A;=2vpR|R;R;+ (2’)’H/52)0‘|a2a3(51 —a;R))
X (S, = a2 R;)(S;— a3R3). (6)

According to (6): (a) every invariant o; for i=
1,...,8 is estimated with about the same reliability;
(b) the first component of A;, 2ysR,R;R;, is nothing
else but a Cochran (1955)-type contribution which
is usually negligible for proteins; (c) the second
component of A; depends on the parameter
2yna, 05/ 5. Since

Ve =Y 22X/ L Luz Lms

then

2ypa,aras/ &;
2§J§(h)f,(k)j;(l) / z/ ZI ZI 1/2
)I/Z\Zm ZHZZHS)

(Zn Tt

APEPN )” ?
Z H1 z H2 ZH3
Thus, according to Fortier, Weeks & Hauptman
(1984), high reliability estimates will be available if
differences in the diffraction intensities between the
native protein and the derivative can be observed in
correspondence with a small number of heavy atoms
and large ratios (3}/Y 1:)s

(d) a simple algebraic rule for estimating the values
of triplet phase invariants (0 or 180°) was presented
by Karle (1983): a triplet invariant is expected to be
positive or negative according to the sign of (Fy, —
F, )(Fay— F,5)(Fy3— F,3), where F, and F; are

=z[os/az/2]n( (1)
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Table 2. Triplets arranged according to Hauptman'’s
equation (H3.12)

For each interval (A, —A,,,), the number of triplets (NR) with
A <A< A, is given; % (x100) is the percentage of triplets
having cosine sign equal to the predicted one; (|®;|) and (| ®; — =|)
may be considered as estimates of the average phase errors for
positive and negative estimated triplets respectively (in parentheses
the expected absolute value of the phase error for the A, interval
considered).

Positive Negative
Intervals for estimated triplets estimated triplets
AO
(A;—A,) NR % (|, NR % (|P;—7|)
< 0-8 353 72-8 67 180 27-2 106
0-8- 1-2 401 79-3 58(63) 146 363 100 (63)
1-2- 1-6 494 76-7 58 (55) 149 289 102 (55)
1-6- 2-0 818 78-6 55(49) 113 44-2 91 (49)
2:0- 2-4 1032 81-1 52 (43) 97 526 86 (43)
2:4- 3-0 1686 84-9 48 (38) 123 56-1 86 (38)
3-0- 36 1741 87-6 45 (34) 112 589 82 (34)
3-6- 4-2 1526 91-1 40 (31) 97 64-9 77 (31)
4-2- 4-8 1302 90-8 40 (29) 58 74-1 71(29)
4-8- 5-5 1244 933 35(27) 76 711 68 (27)
5-5- 65 1392 917 39 (24) 77 64-9 75 (24)
6:5- 9-0 2345 93-2 36(21) 125 80-0 58(21)
9-0-15-0 2469 95-9 34(17) 120 90-8 49(17)
15-0-20-0 1249 99-4 28 (14) 52 96-2 35(14)

structure-factor moduli for protein and derivative
respectively. A related result may be obtained from
(6) by partially expressing it in terms of F, and F,:

A= 2[0'3/0-2/2]PR1R2R3
+2 %fj(h)fj(k)fj(l)(Fdl - F,)

X(Fdz_sz)(Fd3_Fp3)/ZH|Zuzzuju

or

A= 2[0'3/0'3/2]PR1R2R3+2[0'3/0'5/2]HA1AZAL
where
A=(F,~F)/(L )"

is a pseudo-normalized difference (with respect to the
heavy-atom structure).

Thus the signs for a triplet cosine predicted by
Karle’s rule and by (6) coincide provide the Cochran-
type term may be neglected. Furthermore, from a
probabilisitc point of view, (6) suggests that large
reliability values do not depend on (Fa1— Fpy) %
(FdZ_ sz)(Fd3_ Fp}) but on the product A1A243.

4. Experimental results

We have generated a P1 random structure consisting
of 30 carbon atoms and a heavy-atom derivative by
adding one Na atom: then the ratio ¥ ,,/¥'(=0-10)
is not too different from values occurring in real cases.
Calculated structure factors were used up to
[(sin 6)/AJmax = 0-4 A7": 20 000 triplets of type w, =
©nt @ — ¢ney Were found among the 1500 strongest
E magnitudes (E,,, =117, while G could take any

Table 3. Triplets arranged according to formula (6)

For each interval (A, — A,,,), the number of triplets (NR) having
A, <A<A,, isgiven; % (x100) is the percentage of triplets having
cosine sign equal to the predicted one; {|®Ps|) and (|P; — =) may
be considered as estimates of the average phase errors for positive
and negative estimated triplets respectively (in parentheses the
expected absolute value of the phase error for the A interval
considered).

Positive Negative
Intervals for estimated triplets estimated triplets
A
(A;—A;,;) NR % (s NR % (D7)
< 0-8 1385 59-9 85 578 711 68
0-8- 1-2 2012 64-2 76 (63) 370 77-0 60 (63)
1-2- 1+6 3599 71-2 66 (55) 306 84-6 53 (55)
1-6- 2:0 5331 75-4 60 (49) 243 93-8 45 (49)
2-0- 24 6038 79-6 56 (43) 159 96-9 40 (43)
2-4- 3-0 8456 83-0 51(38) 146 99-3 35(38)
3-0- 3-6 7220 86-5 46 (34) 85 100-0 28 (34)
3.6~ 4-2 5741 89-4 43 (31) 46 100-0 23 (31)
4-2- 4-8 4617 919 40 (29) 13 100-0 15(29)
4-8- 55 4098 94:7 36(27) 2 100-0 25(27)
5:5- 65 4029 96-0 35(24) 0
6:6- 9-0 4013 98-6 29(21) 0
9-0-15-0 624 100-0 23(17) 0
15-0-20-0 3 100-0 19 (14) 0

value), and triplet phase cosines were estimated
according to (H3.12) and our formula (6). Tables 2
and 3 show the outcome. It may be observed that:

(1) Triplet reliabilities are rather overestimated by
Hauptman’s approach (see also Fortier, Weeks &
Hauptman, 1984). According to Table 2, 1249 positive
estimated triplets occur with A>20: their average
error (|®;|) is rather large ({|®,|) ~ 28°). The situation
is worse for negative estimated triplets: 52 triplets
occur with |A|>15 and (| @, — 7|y =35°.

Overestimation of triplet reliability is reduced if
(6) is used: indeed only three positive estimated trip-
lets occur with A>20, to which an average error
(95l =19° corresponds: furthermore, no negative
estimated triplets occur with |A|> 5-5. Such an effect
has to be expected because of the non-negligible effect
of Cochran’s centribution.

(2) Estimation of negative triplets according to
(H3.12) is rather poor. The majority of the triplets
which are estimated as negative with |A|<2-0 is
actually positive. The larger efficiency of (6) in picking
up negative triplets is clearly shown in Table 3.

5. Concluding remarks

The basic ideas proposed by Hauptman for the esti-
mation of triplet invariants given six magnitudes have
been further developed. The new probabilistic for-
mulas seem statistically more robust than previous
results, and are expected to be of interest in
macromolecular crystallography.
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Abstract

By solving the kinetic equation for the density matrix
of fast electrons the intensity distribution of the
diffuse background and the Kikuchi lines and bands
is found. It is shown that the Kikuchi pattern contrast
depends on the angle of deflection of the scattered
particles and the crystal thickness. For a thin crystal
the expressions obtained coincide with the usual
results found in the single inelastic scattering approxi-
mation. The theory takes into account both the
dynamical diffraction and multiple inelastic scatter-
ing of electrons and gives a simple interpretation of
a variety of contrast effects observed in thick single
crystals.

1. Introduction

As is well known the diffraction of inelastically scat-
tered electrons in crystals leads to Kikuchi line and
band formation (Tomas & Goringe, 1979; Reimer,
1984). Kainuma (1955), Fujimoto & Kainuma (1963),
Okamoto, Ichinokawa & Ohtsuki (1971) and Ohtsuki
(1983) calculated the intensity distribution in Kikuchi
patterns using the single inelastic scattering approxi-
mation. This approximation is only valid for very thin
crystals (the thickness should be smaller than the
mean free path with respect to inelastic collisions).
In the case of a thick crystal one needs to take into
account multiple inelastic scattering. As was pointed
out by Hall (1970), Ishida (1970, 1971) and Chukhov-
skii, Alexanjan & Pinsker (1973), the contrast reversal
of Kikuchi bands can be explained by means of
absorption of inelastically scattered electrons. This
procedure, however, does not conserve the total prob-
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ability and leads to an exponential decrease of the
scattered electron density (Thomas & Humphreys,
1970; Serneels, Van Roost & Knuyt, 1982). This result
is at variance with experimental observation (Uyeda
& Nonoyama, 1967, 1968) of the Kikuchi pattern in
thick crystals (where the thickness is larger than the
mean free path with respect to inelastic collisions).
The application of an iterative method to the problem
of electron multiple scattering has been reported by
Hgier (1973). This approach leads to a result in the
form of an infinite series with many difficulties for
quantitative evaluation.

The most consistent treatment of this problem is
the use of the quantum kinetic equation for a single-
particle density matrix (Blum, 1981). This formula-
tion of multiple scattering theory was first used by
Migdal (1955) for the case of random space-distribu-
tion scatterers. Kagan & Kononets (1970, 1973, 1974)
in their theory of proton channelling generalized this
method for the case of a crystalline medium. Bird &
Buxton (1980) discussed the application of similar
equations to electron diffraction.

Most of the known analytical solutions of the quan-
tum kinetic equation in single crystals were obtained
in the diffusive approximation (Kagan & Kononets,
1973). This approximation does not work for 10-
1000 keV electrons, i.e. in the energy range used for
observations by transmission electron microscopy.

For the two-beam case the quantum kinetic
equation was solved by Dudarev & Ryazanov (1985)
without using the diffusive approximation.

Nevertheless, the two-beam approximation fails in
many cases for fast electrons, especially if they move
along high-symmetry directions. For this reason, to
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