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that ,  in the case of  flexible molecules ,  m u c h  c learer  
results  are o b t a i n e d  by us ing  a smal le r  bu t  correct  
f ragment ,  r a the r  t han  a la rger  one tha t  may  differ 
s igni f icant ly  in a g loba l  sense  f rom the u n k n o w n  
protein .  

This  work  was s u p p o r t e d  by  the Med ica l  Resea rch  
Counc i l  o f  C a n a d a  t h r o u g h  the G r o u p  on Pro te in  
Structure  a n d  Func t ion .  The  au thors  t h a n k  Dr  D. R. 
Davies  for p rov id ing  t hem wi th  coord ina tes  o f  the 
J539 Fab f ragment .  
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Abstract  

The m a t h e m a t i c a l  t e c h n i q u e  recent ly  used [ H a u p t -  
man  (1982). Acta  Cryst. A38, 289-294]  for in tegra t ing  
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direct  m e t h o d s  and  i s o m o r p h o u s  r e p l a c e m e n t  tech-  
n iques  is r econs ide red .  The  a tomic  pos i t ions  are 
a s s u m e d  to be the pr imi t ive  r a n d o m  var iab les  in s t ead  
of  the rec iproca l  vectors.  A new probab i l i s t i c  f o r m u l a  
for e s t ima t ing  th ree -phase  invar ian t s  g iven six magni -  
tudes  has  been  o b t a i n e d  wh ich  differs f rom the corre-  
s p o n d i n g  resul t  of  H a u p t m a n .  The  first app l i ca t i ons  
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46 A NEW PROBABILISTIC FORMULA FOR TRIPLET INVARIANTS 

suggest that the formula is quite efficient for picking 
up triplet cosines near 0 or rr. 

I. Introduction 

The theoretical basis for integrating the techniques 
of direct methods and isomorphous replacement was 
introduced by Hauptman (1982) (henceforth referred 
to as H). In his notation, the atomic scattering factors 
for a corresponding pair of isomorphous structures 
are denoted by fj and gj, so that 

N 
Eh = IEhl exp (iCph) = (1 / -  ,/2, u2o ) Y. fj exp (2rrihrj) 

j = l  

and 

N 
Gh= IGh[ exp (i0h) = (1/Ce21/0 2) ~. gj exp (27rihrj) 

j = l  

are respective normalized structure factors, where 
N 

am,,= Y, fT'g;" 
j = l  

The main aim of Hauptman's  paper was to initiate 
the probabilistic theory of two-phase and three-phase 
structure invariants for isomorphous pairs. In par- 
ticular: 

(a) the joint probability distribution 

e ( ~ ,  0~, levi, IGhl) 
was found, from which the conditional distribution 

P(0)hllE.I, IG~I) 
may be obtained, where 

0)h = ~Oh -- Oh 

is a two-phase structure invariant; 
(b) the joint probability distribution function 

P(~o,, ~%, ~P3, 0 , ,  02, 03, RI, R2, R3, $1, $2, $3) 

"" [ TF6( 1 -- O~ 2)3] - 1RI R2 R3 Sl S2S 3 

xexp  { - [ 1 / ( 1 - 4 2 ) ] ( R ~ + R  2+ R~ 

+ S~ + S 2 + S 2) + 213[ RIS ' COS (qO l --  01) 

+ R2S2 cos (~02 - 02) + R3S3 cos (t~3 - 03)] 

+2/3oR1R2R3 cos (~Ol + ~p2+ ~P3) 

+ 2/3~[ R~R2S3 COS (q) l  "{- q~2 + 4t3) 

+ R,S2R3 cos (q~, + 02+ qo3) 

+ S, R2R 3 cos (0, + q02+ q~3)] 

+ 2/32[RIS2S 3 cos (~p, + 02 + 03) 

+ S I R 2 S  3 c o s  (01  + q92+ 03)  

+ SIS2R  3 c o s  (Ol  -{- 02 -{- (,f13)] 

+ 2 /~3S182S  3 c o s  (01  "Jr- 02 .-]. 03)} 

was 

(1) 

secured, where ~1, ,P2, ~o3, 01, 02, 03 stand for 

q~h, ~0k, ~01, 0h, 0k, 0, respectively, RI, R2, R3, Sl, 
$2, $3 represent I Ehl, I Ekl, I E, I, I Ghl, IQI,  I G, I respec- 
tively, and 

h + k + l = 0 .  (2) 
The parameters a and /3 [equations (H2.5) and 
(H3.5)-(H3.9)] may be expressed in terms of the 
parameters Olmn. 

From (1) conditional probability distributions of 
the three-phase structure invariants 

0)2 = ~h + ~0k + 0t 

0)3 = (~h + Ok-I'- (~D I 

0)4 = 0h + ~0k + ~01 

0)5 = ~h + Ok + O, 

0)6 = Oh + ~k + 01 

0)7 = Oh + Ok + ~o, 

0)8 = 0h + Ok + 0,, 

given the six magnitudes R, ,  R2, R3, S,,  $2, $3 ,  may 
be found. The first applications of the method 
(Hauptman, Potter & Weeks, 1982) on error-free 
diffraction data from the protein cytochrome C55o from 
Paracoccus denitrificans (molecular weight Mr--- 
14500, space group P212,2,) and a single PtCI42- 
derivative were successful. Reliable tens of thousands 
of triplet invariants having extreme values 0 or rr were 
identified, so the method appeared to be of increasing 
importance for the determination of macromolecular 
structures. 

A useful interpretation of the formulae in terms of 
experimental parameters was suggested by Fortier, 
Weeks & Hauptman (1984). It was shown that distri- 
butions do not depend, as in case of the traditional 
three-phase invariants, on the total number of atoms 
per unit cell but rather on the scattering difference 
between the native protein and the derivative (that 
is, on the scattering of the heavy atoms in the 
derivative). 

Hauptman's  approach is largely innovative and 
opened a new field for the application of direct 
methods. However, his mathematical procedure may 
be further modified in order to derive more accurate 
probabilistic formulas. As a first practical example, 
let us observe the parameter 

= 4,,1 (~2o~o2) 1/2, 
which is deeply involved in distribution (1) (it is also 
employed to define the/3i parameters). While a is a 
resolution-dependent parameter, its value in the pro- 
cedure is calculated via zero-angle scattering factors 
o f f  and g. Indeed in (1) no difference is made among 
ah, ak, a, in spite of the fact they may be markedly 
different. The same considerations hold for the 
parameters a,,,, which define the more complex 
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parameters  /3 and /3i, i = 0 ,  1, 2, 3, via equations 
(H3.5)-(H3.9) .  

The main aim of the present  paper  is therefore to 
obtain new probabil ist ic formulas by a mathemat ical  
approach  which is able to take full account  of  the 
resolution effects on distr ibution parameters .  It is 
worth ment ioning that  in Haup tman ' s  approach  the 
primitive random variable is the ordered triple (h, k, 1) 
of reciprocal vectors which is assumed to be uniformly 
distributed over the subset (2) of the threefold Car- 
tesian product  S t×  Srx  Sr (S~ denotes reciprocal 
space). Then Eh, Ek, E,, Gh, Gk, G~ are functions 
of  the primitive random variables h, k, 1, so that they 
are themselves random variables. 

In our approach  atomic coordinates are chosen to 
be the primitive random variables while h, k, 1 will 
be a fixed triple of reciprocal vectors. This enables 
us to calculate all the distr ibution parameters  for that  
chosen triple, that  is to say, at the resolution corre- 
sponding to the Ibl, Ikl, Ill values, 

The distr ibution based on atomic coordinates as 
the independent  r andom variables is conceptual ly  
distinct from that  in which it is assumed that the 
reciprocal vectors are random variables (see 
Giacovazzo, 1977). In most  cases reciprocal vectors 
and atomic coordinates  play a quite symmetr ic  role 
[i.e. when no prior informat ion is available, and it is 
only necessary that the fractional part of  hr be uni- 
formly distr ibuted in the interval (0, 1)]. On the other 
hand prior informat ion often breaks down the sym- 
metry of  the roles, so that  the two distributions are 
deeply different [for example,  when a structural frag- 
ment  has a known posit ion (Giacovazzo, 1983), or 
when superstructural  effects are present (Cascarano,  
Giacovazzo & Lui6, 1985, 1987)]. Symmetrizat ion of  
the roles is still possible but some supplementary  
condit ions on the reciprocal vectors are needed if 
they are used as primitive random va.riables. For 
example,  in the case of  substructural  effects it is often 
necessary to restrict reciprocal vectors to subsets con- 
stituted by reflexions of  fixed parity. In the present 
case, in which distr ibution parameters  depend on the 
moduli  Ihl, Ikl, Ill, the ordered triple (h, k, 1) has to be 
assumed to be uniformly distributed over the subset 
of Sr × S~ x S~ defined by (2), but under  the supple- 
mentary  condi t ion that Ihl, Ikl, Ill have fixed chosen 
values. 

In §§ 2 and 3 the main formulas are given, and in 
§ 4 a first practical appl icat ion is described. 

2. The joint probability distribution of the six structure 
factors E h, E k, E,, Gh, Gk, G,, where h + k + 1 = 0 

The atomic positions are chosen to be the primitive 
random variables. The mathematical  formalism adop- 
ted here follows that  described in a recent book 
(Giacovazzo,  1980) with some differences in detail, 
which for the sake of  brevity are not described. One 

obtains the result 

P(~p,, ~02, ~03, ~ , ,  ~2, ~3, R1, R2, R3, S1, $2, $3) 

~- (1/~r 6) gl R2R3S, $2S3[ (1 - a 2)(1 - a 22)(1 - a ~)]-1 

{, 
x e x p  + ~  [ - ( R ~ + S ~ ) / ( 1 - a ~ )  

i=1 

+2flo,R~S~ cos (~p~- ~o~)] 

+2floR,R2R3 cos (~o, + ~02+ ~03) 

+2fl,,S, R2R3 cos (~b, + ~02+ ~03) 

+2fl,2R~S2R3 cos (~o, + ~2+ ~03) 

+ 2/3,3R~ R2S3 cos (~o, + ~2 + ~b3) 

+2f12,R~S2S3 cos (~o, + ~2+ tP3) 

+ 2/322S 1R2S  3 COS (~1 + ~P2 + ~3) 

+2/323SIS2R 3 c o s  (~b, + ~ 2 +  ~t)3) 

q- 2/33S, S2S 3 c o s  ( ~ ,  4- i//2 -t- ~ 3 ) }  (3) 

where 

1' /30 = (1 --O~ 2) (--O~,C¢20~3~456 

-'[- Of, O~2 ~/345 + O~, O~ 3 ')/246 "[- O~20~3'~, 56 

-- OLI ')/234- O~2~/135 -- O~3')t126 nt- T'23),  

/31,= ( 1 - ~ )  (-~1~2~,,,6 

-[- Ofl ff2"~135-t- ffl Of3'~126"-~- Of 2ff3"~456 

- a ,  ~'123 - a2 T345 - a3 31246 + ~/234), 

/31~= ( 1 - ~ ,  ~) ( - ~ , ~ , / ~  

-~- O~10~2~/234-4 - O~10/3~456"JV O~20~3'Y126 

-- O/I ')/345- 092~123- Of3T156 nt- ~135), ]1 
"t- 0~1 ~2'~456"~- Ofl ~3~234"-~- 1~2~3'~135 

- a l  ~/246- a2Y,56- a3~123 + 3',26), 

1-' /32,-- ( 1 -  c~) (-- Ol~ 10f20~3 ~/234 

-[- Ot~l O/2'~246-[- Ofl O~3~/345"1- O~2Of3 ~/123 

-- Of 1')/456-- ~2~/126-  O~3T135 -[- T156), 

1, o,o.o.. , . .  

+ (~1 ~2'~156"t- ~ l  0~3"~123"~- ~20~3'~345 

-- C~I T 1 2 6 -  C~27456- ~3 ~234 "~- '~246), 
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]' 
/323= (1- ,~)  (-,~,~2,~3~,26 

-[" O~ 1 ~2T123 "q" 01~1 0~3 T156 "q- 0~20~3 ~246 

-- 01~1 ~/135 -- t ~ 2 T 2 3 4 -  Og3 'Y456 -~- T345), ]' 
/33= (1 - ~ )  (-~,~2~,,~3 

"1- Ogl O~2 'Y126 -[" O~10~3 "Y135 "[- O~20~3 ')/234 

-- O~1"Y156- O~2"Y246- O~3 T345 q- ~456), 

/3oi = ai/  ( 1 -  a 2) f o r i = l , 2 , 3 .  

In their turn 

c~, = a , , ( h ) / [  ce20(h) o~02(h)] '/2 

a2 = a,~(k)/[a20(k)ao2(k)]  '/2 

43 = a,,(l)/[a2o(l)ao2(l)] '/2 

where 

Also 

N 
a2o(h) = Y~ f 2 ( h ) =  Y.,, 

j = l  

N 
~ 2 o ( k )  = Y. fY(k) = 22, 

j = l  

N 
a20(l) = Y~ f2(I) = 23, 

j= !  

N 
ao2(h) = Y~ g2(h)= El, 

j = l  

N 

ao2(k)= Y. g2(k)=Y.2, 
j = l  

N 
t a02(l)= Y~ g2( l )=Y3 , 

j = l  

N 
a , , (h)  = E f~(hlgj(h), 

j = l  

N 
a , , (k)  = Y~ fj(k)gj(k),  

j = l  

N 
a, , ( l )  = E fj(l)gj(I). 

j = l  

N 
')/126 = ( E l  E 2  E'3 ) -1 /2  E fj(h)fj(k)gj(l),  

j = l  

N 
T,35 = (Z, 2'2 Z3) - ' /2 E fj(h)gj(k)fj(l) ,  

j= I  

N 
Y,56 = (E, Z'2 2'3) - ' /2 Z fj(h)gj(k)gj(l) ,  

j = l  

N 
')/234= (Ztl  ~ 2  ~ 3  ) -1 /2  ~ gj(h)fj(k)fj(l), 

j = l  

Table 1. Correspondence between parameters occur- 
ring in Hauptman's  and in our distribution 

Or' ---~ ~i ~ Ot2 ~ Or' 3 

/3 --"/3o,,/302,/303 
/3o-'/30 
/3, -" /3,3, /3,2, /3,~ 
/32-' /3~, , /322, /323 
/33 -~/33 

N 
'}/345 = ( E l  ~ 2  ~ 3  ) - ' / 2  ~ g)(h)g)(k)fj(l), 

j = ,  

N 

'Y246"~-(E; E,E',) - ' / '  E gj(h)fj(k)gj(l), 
j = ,  

N 
= ' E ' 3  ) -1 /2  T456 ()-[', ~ 2  ~ g)(h)gj(k)gj(l), 

j = l  

N 
Y,23=(Y~, Y2 23) -'/2 Y £(h)£(k)£( l ) .  

j = ,  

If (3) is compared  with (1) it may be observed that: 
(a)  A one-to-many correspondence exists between 

a and/3~,i = 0, 1, 2, 3 in (1), and parameters occurring 
in (3). Parameters playing a similar (but not identical 
role) lie on the same line in Table 1. 

(b) ai and/3 o parameters  occurring in our distribu- 
tion are numerically markedly different from the cor- 
responding parameters  of Hauptman.  This also holds 
for terms/3o and/33, in spite of the fact that the same 
symbols are used in (1) and (3). 

(c) To the eight parameters  3'or only four distinct 
parameters (i.e. a3o, a2,,  a,2, O~03) correspond in 
Hauptman ' s  distribution. 

From (3) the following conditional probability dis- 
tribution may be derived: 

where 

P( wl I R, , R2, R3, S, , $2, $3) 

[2~'Io(A,)]- '  exp [A, cos to,] (4) 

A, = [2floR,R2R3 + ( 2fl , ,S,  R2R3) T~ 

+ (2fl,2R,S2R3) 7"2 + (2fl,3R, R2S3) T3 

+ 21323S,$2R31"11"2 + (21322S, R2S3) T, T3 

q- 2/32,R,$2S3 7"2 I"3 + 2/33S,$2S3 T1 T2 T3] 

where 

Ti = I,(2flo,RiS,)/ Io(2flo,R,S,) 

is the ratio of two modified Bessel functions. Equat ion 
(4) may usefully be compared with (H3.14). 

Similar expressions for toi, i = 2 , . . . , 8  may be 
found in a recursive way. Adopt ing the practical rule 
described by Fortier, Weeks & Hauptman  (1984), we 
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get 

A, = [ 7"o(2floR1R2R3) + r, l(2fl, ,S, R2R3) 

+ r,2(2fl,2R, $2 R3) + "/'13(2fl,3 R, R2S3) 

+ r~3(2#~3S, S~ R3) + r=(2#=S, R2S3) 

+ r2,(2f12,R,S~S3) + r3(2f13S, S2S3)] (5) 

where r = CtC2C3 is obtained by comparing the ith 
structure factor associated with the coefficient of r 
with the ith structure factor associated with the 
invariant. If they are of the same type, i.e. both R or 
both S, then C, = 1 for i = 1, 2, 3, otherwise Ci = T~. 

3. The case of a native protein heavy-atom derivative 

Formulas (3) and (1) are completely general and 
include as special cases native protein and heavy- 
atom isomorphous derivatives as well as X-ray and 
neutron diffraction data. We explicitly treat here the 
case of a native protein heavy-atom derivative 
because: 

(a) it frequently occurs; 
(b) the parameters of the distribution (3) are then 

rather simple; 
(c) it allows an easier interpretation of the formula 

in terms of diffraction experiments. 
The following notation is introduced: 

EHI = ~ fJ2(h), Y'. w> : E f~(k), ,Y--..3 = Y'- f2(1), 
H H H 

Y. = [~  f~ (h)fj (k)fj (l) ] / (5 " . ,  Y'-2 ~3) '/2 

and 

where summations over P and over H state that free 
indices vary over protein atoms and over heavy atoms 
respectively. In its turn yp may be approximated by 
the well known parameter [0"3/0"3/2]p, where 0.. = 
~' Zj', and Zj is the atomic number of the j th atom. 
Furthermore 

a2o(h)=a,,(h)=,Y_.,1, ao2(h)=,Y_.,+Y'.n,=Y'. ', 
a2o(k)=c~,,(k)=5". 2, a o 2 ( k ) = E 2 + E n 2 = E 2  

Ce2o(l) = ffl,(l) = E 3 , a03(l) = E 3 + E . 3  =E3 

Ofl= 1 , O~2= 2 2 ' 

O~3 = ( E 3 / E 3 )  1/2 

/I;.2, 

) 1/2 

/3o3= Y~ Y~' /Y. 3 / H3) 

e,=l-I(1-~,), e2=[I (1-~) ,  
i i 

y 2 3 4 / ~  = Y m / a 2  = y~26 /a3  = 

Y345/O~l a2 = Y246/al a3 = Y156/a2~3 = 3'123 = Yp, 

3/456 : (3/p + 3/H)O~I O~20~3, 

/ 3 0 = ( e 2 y p  2 2 2 -- O~ 10~2093 ~/H ) /E2 ,  
2 2 

~11 = OllOl2013")/H/E2, 

fl,3 = a~22a3Yn/e2, 

~= = -,~1,~ ]o<3"/. / e~, 

1323 = - c~ ,  c ~ 2 c ~ y . / e 2 ,  

/~3 = O~10~20~3TH/g2" 

Let us now suppose that the terms (2floiRiSi) are 
sufficiently large to justify the assumption T~ = 1 for 
i =  1, 2, 3. Then (5) may be approximated by 

Ai = 2 TpRIR2R3 + ( 2"yu / E2)°tlOt2°t3( Sl -- °~IRI) 

X ( S  2 - 0~2R2) ( S  3 -- O~3 R3). (6)  

According to (6): (a) every invariant to~ for i =  
1 , . . . ,  8 is estimated with about the same reliability; 
(b) the first component of Ai, 2ypRIR2R3, is nothing 
else but a Cochran (1955)-type contribution which 
is usually negligible for proteins; (c) the second 
component of Ai depends on the parameter 
2THa i  a20 /3 /e2 .  Since 

1/e2 = E; E~ E 3 / E . ,  E . 2  E . 3  

then 

2 yuce 1 ce2 0£3/E 2 

2 ..~fJ(h)fj(k)fj(l) ( __~, 5-" ~ '  \ 1/2 
1 

/ V ' V ' y "  \1/2 
3/2 | /--' 1 Z.~2 3 | 

"" 2[ 0"3/0"2 ] .  k~ n--]~,~-~2 ~n3 / (7) 

Thus, according to Fortier, Weeks & Hauptman 
(1984), high reliability estimates will be available if 
differences in the diffraction intensities between the 
native protein and the derivative can be observed in 
correspondence with a small number of heavy atoms 
and large ratios (E'i/Y'.n,); 

(d) a simple algebraic rule for estimating the values 
of triplet phase invariants (0 or 180 °) was presented 
by Karle (1983): a triplet invariant is expected to be 
positive or negative according to the sign of (Fd~-- 
F p l ) ( F a 2 -  F p 2 ) ( F a 3 -  Fp3), where Up and Fa a re  
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Table 2. Triplets arranged according to Hauptman's 
equation (H3.12)  

For  each interval (A , -A~+~) ,  the n u m b e r  of  triplets (NR)  with 
A~<Ao<A,+~ is given; % ( x l 0 0 )  is the percentage  o f  triplets 
having cosine sign equal to the predicted one; (]q)31) and (]q)3- ~'1) 
may be considered as estimates of the average phase errors for 
positive and negative estimated triplets respectively (in parentheses 
the expected absolute value of the phase error for the A o interval 
considered). 

Positive Negative 
Intervals for estimated triplets estimated triplets 

Ao 
(A,- A,+,) NR % (l~3l) NR % (l~ 3 

< 0.8 353 72.8 67 180 27.2 106 
0-8- 1.2 401 79.3 58(63) 146 36.3 100 
1.2- 1.6 494 76.7 58(55) 149 28.9 102 
1-6- 2-0 818 78.6 55(49) 113 44-2 91 
2.0- 2-4 1032 81.1 52(43) 97 52.6 86 
2.4- 3.0 1686 84.9 48(38) 123 56.1 86 
3.0- 3.6 1741 87.6 45(34) 112 58.9 82 
3-6- 4.2 1526 91.1 40(31) 97 64.9 77 
4-2- 4-8 1302 90.8 40(29) 58 74.1 71 
4-8- 5.5 1244 93.3 35(27) 76 71.1 68 
5-5- 6.5 1392 91.7 39 (24) 77 64.9 75 
6.5- 9.0 2345 93.2 36(21) 125 80.0 58 
9.0-15.0 2469 95.9 34(17) 120 90-8 49 

15.0-20.0 1249 99.4 28(14) 52 96.2 35 

- ~1) 

(63) 
(55) 
(49) 
(43) 
(38) 
(34) 
(31) 
(29) 
(27) 
(24) 
(21) 
(17) 
(14) 

Table 3. Triplets arranged according to formula (6) 

For each interval ( A ~ -  A,+t) , the n u m b e r  of  triplets ( N R )  having  
A, < A < A~÷ ~ is given; % (x 100) is the percentage  of  triplets having 
cosine sign equal  to the predic ted  one;  ([q)31) and ([q)3-~r[) may  
be considered as est imates of  the average  phase  errors  for posit ive 
and negative es t imated triplets respect ively (in paren theses  the 
expected absolu te  value of  the phase  error for the A interval 
considered). 

Positive 
Intervals for estimated triplets 

A 
(A,- A,+,) NR % <1 q'31) NR 

< 0.8 1385 59.9 85 578 
0.8- 1.2 2012 64.2 76(63) 370 
1.2- 1.6 3599 71.2 66(55) 306 
1.6- 2.0 5331 75.4 60(49) 243 
2.0- 2.4 6038 79.6 56(43) 159 
2.4- 3.0 8456 83.0 51(38) 146 
3.0- 3.6 7220 86.5 46(34) 85 
3.6- 4.2 5741 89.4 43(31) 46 
4.2- 4.8 4617 91.9 40(29) 13 
4.8- 5.5 4098 94.7 36(27) 2 
5.5- 6.5 4029 96.0 35(24) 0 
6.6- 9.0 4013 98.6 29(21) 0 
9.0-15.0 624 100.0 23(17) 0 

15.0-20.0 3 100.0 19(14) 0 

Negat ive  
es t imated triplets 

% (14'3- ~1) 
71.1 68 
77"0 60(63) 
84"6 53(55) 
93"8 45(49) 
96'9 40(43) 
99'3 35(38) 

100"0 28(34) 
100-0 23(31) 
100"0 15(29) 
100.0 25(27) 

structure-factor moduli  for protein and derivative 
respectively. A related result may be obtained from 
(6) by partially expressing it in terms of Fd and Fp" 

A = 2[ 0"3/0"32/2] p g  I R2R 3 

+ 2 E fj (h)fj (k)fj (!) ( Fd, -  Fp,) 
H 

X (F  a2-  F p 2 ) ( F a 3 -  Fp3)/ZH, E.2 E.3, 
or, 

A = 2[ 0"3/0"3/2]eR , R2R3 + 2[ o'3/0"~/2] hA, A2 A3, 

where 

A=(Fd--  Fp)I(E.)  '/2 

is a pseudo-normal ized difference (with respect to the 
heavy-atom structure). 

Thus the signs for a triplet cosine predicted by 
Karle 's rule and by (6) coincide provide the Cochran-  
type term may be neglected. Furthermore,  from a 
probabilisi tc point of view, (6) suggests that large 
reliability values do not depend o n  (Fdl--Fpl)× 
(Fd2--Fp2)(Fd3- Fp3 ) but on the product  A~A2A 3. 

4. Experimental results 

We have generated a P1 random structure consisting 
of 30 carbon atoms and a heavy-atom derivative by 
adding one Na atom: then the ratio ~H /~ ' ( " -0"10 )  
is not too different from values occurring in real cases. 
Calculated structure factors were used up to 
[(sin 0)/A ]ma., -- 0"4 A- l :  20 000 triplets of  type o~ = 
~0h+ ~0k--~0h+k were found among the 1500 strongest 
E magnitudes (Emi.--1"17, while G could take any 

value), and triplet phase cosines were est imated 
according to (H3.12) and our formula (6). Tables 2 
and 3 show the outcome. It may be observed that: 

(1) Triplet reliabilities are rather overest imated by 
Hauptman ' s  approach (see also Fortier, Weeks & 
Hauptman,  1984). According to Table 2, 1249 positive 
estimated triplets occur with A >  20: their average 
error (] q)3]) is rather large (([ q)3]) - 28°). The situation 
is worse for negative est imated triplets: 52 triplets 
occur with [A[> 15 and ([ @3 -- "n'[) --~ 35 °. 

Overest imation of triplet reliability is reduced if 
(6) is used: indeed only three positive estimated trip- 
lets occur with A > 2 0 ,  to which an average error 
([q)31) = 19" corresponds:  furthermore,  no negative 
estimated triplets occur with IAI > 5.5. Such an effect 
has to be expected because of the non-negligible effect 
of Cochran 's  contribution.  

(2) Estimation of negative triplets according to 
(H3.12) is rather poor. The majority of the triplets 
which are estimated as negative with IAI<2"0 is 
actually positive. The larger efficiency of (6) in picking 
up negative triplets is clearly shown in Table 3. 

5. Concluding remarks 

The basic ideas proposed by Hauptman  for the esti- 
mation of triplet invariants given six magnitudes have 
been further developed. The new probabilist ic for- 
mulas seem statistically more robust than previous 
results, and are expected to be of interest in 
macromolecular  crystallography. 
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C. GIACOVAZZO, G. CASCARANO AND ZHENG CHAO-DE ' 51 

for Theoretical Physics, Programme for Training and 
Research in Italian Laboratoires, Trieste, Italy) for 
financial support during a stay at the University of 
Bari. 

References 

CASCARANO, G., GIACOVAZZO, C. & LuIt~, M. (1985). Acta 
Cryst. A41, 544-551. 

CASCARANO, G., GIACOVAZZO, C. & Lult~, M. (1987). Acta 
Cryst. A43, 14-22. 

COCHRAN, W. (1955). Acta Cryst. 8, 433-438. 
FORTIER, S., WEEKS, C. M. & HAUPTMAN, H. (1984). Acta Cryst. 

A40, 544-548. 
GIACOVAZZO, C. (1977). Acta Cryst. A33, 50-54. 
GIACOVAZZO, C. (1980). Direct Methods in Crystallography. 

London: Academic Press. 
GIACOVAZZO, C. (1983). Acta Cryst. A39, 685-692. 
HAUPTMAN, H. (1982). Acta Cryst. A38, 289-294. 
HAUPTMAN, H., POTTER, S. & WEEKS, C. M. (1982). Acta Cryst. 

A35, 294-300. 
KARLE, J. (1983). Acta Cryst. A39, 800-805. 

Acta Cryst. (1988). A44, 51-61 

Multiple Scattering Theory for Fast Electrons in 
Single Crystals and Kikuehi Patterns 

BY S. L. DUOAREV AND M. I. RYAZANOV 

Moscow Engineering Physics Institute, Moscow 115409, USSR 

(Received 8 May 1987; accepted 11 August 1987) 

Abstract 

By solving the kinetic equation for the density matrix 
of fast electrons the intensity distribution of the 
diffuse background and the Kikuchi lines and bands 
is found. It is shown that the Kikuchi pattern contrast 
depends on the angle of deflection of the scattered 
particles and the crystal thickness. For a thin crystal 
the expressions obtained coincide with the usual 
results found in the single inelastic scattering approxi- 
mation. The theory takes into account both the 
dynamical diffraction and multiple inelastic scatter- 
ing of electrons and gives a simple interpretation of 
a variety of contrast effects observed in thick single 
crystals. 

I. Introduction 

As is well known the diffraction of inelastically scat- 
tered electrons in crystals leads to Kikuchi line and 
band formation (Tomas & Goringe, 1979; Reimer, 
1984). Kainuma (1955), Fujimoto & Kainuma (1963), 
Okamoto, Ichinokawa & Ohtsuki (1971) and Ohtsuki 
(1983) calculated the intensity distribution in Kikuchi 
patterns using the single inelastic scattering approxi- 
mation. This approximation is only valid for very thin 
crystals (the thickness should be smaller than the 
mean free path with respect to inelastic collisions). 
In the case of a thick crystal one needs to take into 
account multiple inelastic scattering. As was pointed 
out by Hall (1970), Ishida (1970, 1971) and Chukhov- 
skii, Alexanjan & Pinsker (1973), the contrast reversal 
of Kikuchi bands can be explained by means of 
absorption of inelastically scattered electrons. This 
procedure, however, does not conserve the total prob- 

ability and leads to an exponential decrease of the 
scattered electron density (Thomas & Humphreys, 
1970; Serneels, Van Roost & Knuyt, 1982). This result 
is at variance with experimental observation (Uyeda 
& Nonoyama, 1967, 1968) of the Kikuchi pattern in 
thick crystals (where the thickness is larger than the 
mean free path with respect to inelastic collisions). 
The application of an iterative method to the problem 
of electron multiple scattering has been reported by 
H0ier (1973). This approach leads to a result in the 
form of an infinite series with many difficulties for 
quantitative evaluation. 

The most consistent treatment of this problem is 
the use of the quantum kinetic equation for a single- 
particle density matrix (Blum, 1981). This formula- 
tion of multiple scattering theory was first used by 
Migdal (1955) for the case of random space-distribu- 
tion scatterers. Kagan & Kononets (1970, 1973, 1974) 
in their theory of proton channelling generalized this 
method for the case of a crystalline medium. Bird & 
Buxton (1980) discussed the application of similar 
equations to electron diffraction. 

Most of the known analytical solutions of the quan- 
tum kinetic equation in single crystals were obtained 
in the diffusive approximation (Kagan & Kononets, 
1973). This approximation does not work for 10- 
1000 keV electrons, i.e. in the energy range used for 
observations by transmission electron microscopy. 

For the two-beam case the quantum kinetic 
equation was solved by Dudarev & Ryazanov (1985) 
without using the diffusive approximation. 

Nevertheless, the two-beam approximation fails in 
many cases for fast electrons, especially if they move 
along high-symmetry directions. For this reason, to 
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